Notch inhibition during corneal epithelial wound healing promotes migration.
نویسندگان
چکیده
PURPOSE To determine the role of Notch signaling in corneal epithelial migration and wound healing. METHODS Immunolocalization of Notch1 was performed during epithelial wound healing in vivo in mouse corneal epithelial debridement wounds and in vitro in primary human corneal epithelial cells following a linear scratch wound. The effects of Notch inhibition, using the γ-secretase inhibitor N-(N-[3,5-difluorophenacetyl]-l-alanyl)-S-phenylglycine t-butyl ester (DAPT) or following stable transfection with Notch1-short hairpin RNA (shRNA), was evaluated in a scratch assay and transwell migration assay. Likewise, in vitro adhesion, proliferation and the actin cytoskeleton was examined. The DAPT effect was also evaluated in vivo in a mouse model of corneal epithelial wound healing. RESULTS The expression of Notch1 was reduced at the leading edge of a healing corneal epithelium both in vivo and in vitro. Notch inhibition using DAPT and using Notch1-shRNA both enhanced in vitro migration in scratch and transwell migration assays. Consistent with this increased migratory behavior, Notch inhibited cells demonstrated decreased cell-matrix adhesion and enhanced lamellipodia formation. Notch inhibition by DAPT was also found to accelerate corneal epithelial wound closure in an in vivo murine model without affecting proliferation. CONCLUSIONS The results highlight the role of Notch in regulating corneal epithelial migration and wound healing. In particular, Notch signaling appears to decrease in the early stages of wound healing which contributes to cytoskeletal changes with subsequent augmentation of migratory behavior.
منابع مشابه
Transactivation of EGFR mediates insulin-stimulated ERK1/2 activation and enhanced cell migration in human corneal epithelial cells.
PURPOSE Insulin activates phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK)-1/2 in human corneal epithelial cells. These events have been shown to be involved in wound healing. However, the mechanism of insulin-induced ERK pathway is not clear during corneal wound healing. In this study, the effect of insulin associated with epidermal growth factor receptor (E...
متن کاملNotch signaling promotes the corneal epithelium wound healing
PURPOSE The Notch signaling pathway plays crucial roles in regulation of cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. This study was designed to test the effects of enhanced Notch activity on corneal epithelium homeostasis and wound healing using the transgenic mice that overexpressed an activated Notch1 (NICD) in cornea epithelium. METHODS Th...
متن کاملEffect of EGF-induced HDAC6 activation on corneal epithelial wound healing.
PURPOSE Epidermal growth factor (EGF) stimulates migration in corneal epithelial wound healing. The purpose of this study was to investigate the effect of EGF-induced alpha-tubulin deacetylation through activating HDAC6 on migration in corneal epithelial wound healing. METHODS Human corneal epithelial (HCE) cells were cultured in DMEM/F12 medium containing 10% FBS in a 37 degrees C incubator ...
متن کاملJBP485 promotes corneal epithelial wound healing
Proper wound healing is vital for maintenance of corneal integrity and transparency. Corneal epithelial damage is one of the most frequently observed ocular disorders. Because clinical options are limited, further novel treatments are needed to improve clinical outcomes for this type of disease. In the present study, it was found that placental extract-derived dipeptide (JBP485) significantly i...
متن کاملEffects of amniotic membrane on epithelial wound healing and stromal remodelling after excimer laser keratectomy in rabbit cornea.
AIMS To investigate if the amniotic membrane (AM) promotes epithelial migration while inhibiting stromal remodelling associated with corneal haze after excimer laser keratectomy. METHODS A wound 150 microm in depth and 6.0 mm in diameter was produced in 40 rabbits using an excimer laser. One eye was randomly chosen to be covered by the AM while the other eye served as a control. Epithelial wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2012